Optimal order collocation for the mixed boundary value problem on polygons

نویسنده

  • Pascal Laubin
چکیده

In usual boundary elements methods, the mixed Dirichlet-Neumann problem in a plane polygonal domain leads to difficulties because of the transition of spaces in which the problem is well posed. We build collocation methods based on a mixed single and double layer potential. This indirect method is constructed in such a way that strong ellipticity is obtained in high order spaces of Sobolev type. The boundary values of this potential define a bijective boundary operator if a modified capacity adapted to the problem is not 1. This condition is analogous to the one met in the use of the single layer potential, and is not a problem in practical computations. The collocation methods use smoothest splines and known singular functions generated by the corners. If splines of order 2m− 1 are used, we get quasi-optimal estimates in Hm-norm. The order of convergence is optimal in the sense that it is fixed by the approximation properties of the first missed singular function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

A New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems

In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...

متن کامل

Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder

In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...

متن کامل

A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...

متن کامل

An Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme

We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001